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CH/lR/lCTIIRISTICSOF A CANARD-TYT13MISSILE

Al’..

An investigation haE

AMA!JH V OF 1.60 ... -
ByA. W&r Robins

SUMMARY

been conducted to determine the effect of
several seeker-nose configurations on the static longitudinal stability,
the canard control characteristics, s.ndlift snd drag at a Mach number
of 1.60 of a csnard-type rsm-jet missile having 70° delta csnard control
surfaces and 70° delta wings. The angle of attack ranged from about ~“
to about 14.5°, and the Reynolds number based on wing mean aer&lynamic

chord was 3.83 x 106.

The test results ‘indicatethat, with the exception of a model with
a cruciform nose shape, the configurations tested exhibited no signifi-
cant difference in either static longitudinal stabili~ or horizontal-
canard control effactiveness. A.

Horizontal-canmd Mnge-mment data were obtained for five of the
nose shapes tested and indicated that the spike-nose configurations
tended to produce larger hinge moments, this effect~be~ more PrOnUUIICe%p...
in the case of the cone spike. The substitution of the conical or sloti%d:”
cone noses for the parabolic nose kd little effeCt on the horizontal- .. L

canard hinge manents.

All configurations tested showed less drag in the lower angle-of-
attack rsnge thsn the model with the spherical nose.

.
. ..

INTRODUCTION

The use of seeker-type guidance systems in missiles ususlly reqdres
the use of a relatively blunt fuselage nose shape in order to accommodate
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the seeker “eye” with a relatively unobstructed view forward. Inasmuch
as the drag with a large degree of bluntness is considerable, it is
hportant to determine how this drag can be reduced without seriously
impairing the guidance system.

.
At present, much data are available on the effect of spikes on the

zero-angle-of-attack flow at supersonic speeds about blunt bodies of
revolution (refs. 1 to 6) and of the drag of bodies with various nose
stipes at supersonic speeds (refs. 6 to 8). There are little data avail-
able, however, which might be usem m t~ desi~ of OPticd seeker
noses showing the effects of nose shape on the longitudinal stability
and control and drag of a nmdel at angles of attack. It is the purpose
of this investigation to determine some of the effects at a Mach number
of 1.60 of several nose shapes on the longitudinal characteristics at
@es of attack of a model of a canard-type rsm-jet missile incorpo-
rating an optical seeker. The present investigation is in insufficient
detail.to amplify the results with an explanation of the related flow
phenomena.

Much information on the aerodynamic characteristics including longi-
tudinal and latersl stability and control characteristics at a Mach nmn-
ber of 1.60 is available for this missile with a psmabolic nose in ref-
erence 9. Reference
various Conibinations

10
of

presents the aerodynamics of the missile with
components.

SYMBOLS

The longitudinal stability--s system is shown in figure 1. The
reference center of gravity was located at -19.5 percent of wing mean
aerodynamic chord.

CL lift coefficient, -z/qs

CD drag coefficient, -x/qs.*

h pitching-moment coefficient, M ‘/qS~

chH horizontal-canard hinge-moment coefficient, ‘H/@@H

z force along Z-axis

x force along X-axis

M’ moment about Y-axis
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moment about horizontal-canard hinge axis

exposed area of horizonti canard

total.wing area

free-stream dynamic
>

free-stresm density

pressure, l/2p@

free-stream velocity

wing mean aerodynamic chord

horizontal-canard mean aerodynamic chord

Mach nuoiber

angle of attack, deg

horizontal-canard deflection, deg

slope of lift curve

APPARATUS AND MODELS

Basic Model

A canard-type ram-jet missile model having 70° delta forward-control
surfaces and 70° delta wings with tip ailerons was used. The ram-jet
nacelles were pylon-mounted in the plane of fixed vertical-canard sur-
faces above ~ below the fuselage at 90° to the wing plane. Figure 2
shows a three-view drawing of the basic model with the parabolic nose.
A photograph of the model, disassenibledto show its main components, is
shown in figure 3. Table I presents the geometric characteristics of
the model, the body coor&Lnates of which are given in tsble II. Details
of the canard control surfaces and wing appear in figure 4. Table III
shows nacelle details.

The model was sting-supported as shown in figure 5 and was fitted
with a six-cmponent strain-g-e balance housed within the fuselage. A
smaU electric motor located forward of the balance actuated a mechanism
which provided that the incidence angle of the horizontal-canard surfaces

— —- —— — . . .
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be remotely controlled. An individual strain-gage
measure the hinge mmnents of the horizontal-canard

A drawing of the
parting line is shown
nose shapes tested.

Paratmlic nose.-
given in figure 6, is

Nose Shapes

WA RM L53118

balance was used to
surface. “

several_nose shapes appears in figure 6. ~ nose
in figure 2.

The parabolic
included Oli&f

The sphericsl

Figure 7 is a photograph of all the

nose, the cocmiinates of which are
for purposes of comparison.

nose was considered to representSpherical nose.-
approximately the lens of the seeker system and would therefore be the
best, optically, of the nose series. No changes in the model were made
behind the nose-body intersection. The ratio of nose radius to msximum
body radius was 0.6, appradmately.

Coticsl nose.- ‘I’&30° conical nose was considered (ref. 11) to be
the minimum-apex-angle translucent cone which could be tolerated opti-
CSJJY for seeker use.

>0° slotted cone.- The no slotted cone, the details of which are
shown in figure 6, is composed of a hollow cone from which approxdmatel.y
hall?of the surfa&e area has been removed in longitudinal strips. Ref--
erence 2 includes tests of the slotted-cone nose shape, as well.as vsri-
ous modifications of it. !t!bisnose shape was designed in an attempt to
retain, at high angles of attack, the low-angle-of-attack aerodynamic
characteristics of the nose spike by fixing the associated dead-air
region (refs. 3 and 4).

~“ pldn spike.- For spherical nose shapes, considerable drag
reduction has been indicated with the use of a spike protruding shead of
the body. The spike tested was somewhat shorter than optimum zero-angle-
of-attack spike length (refs. 3 to 5), since it was felt that the long
dead-air region associated with the longer spike would be more sensitive
to angle of attack. The ~“ spike had its apex at the ssme location as
the crucifomn, coqical, sad slotted-cone noses.

>0° cone spike.- The 30° cone spike differed from the plain spike
only in having a longer conical section which terminated as a shoulder
twice the spike dismeter. This spike was designed in an attempt to
maintain the approximately conical dead-air region at higher angles of
attack than the plain spike.

0° cruciform nose.- The curcifo?.mnose, which would be optic@
good, was an attempt to effect’a drag reduction in much the same manner
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as the spike configurations and to further aid in f- the associated
dead-air region at angles of attack.

The test

Mach nuqber .

Test

conditions were:

. . . . . . . . . .

TESTS

Conditions

. . . . . . .

Reynolds number, based on wing mean aerodynamic
Stagnation pressure, ah . . . . . . . . . . .
Stagnation temperature, OF . . . . . . . . . .
Stagnation dewpoint, oF . . . . . . . . . . .

. . . . . . ..* 1.60

chord . . . 3.83 X 106
. . . . . . . . . . 1.0
.0 .. . . . . . . . Ho
. . . . . . ● . . <-25

The latest calibration of the tunnel test section indicates that
the magmitude of the Mach number variation is ~0.01 and that the varia-
tion of the flow angle in both the horizontal and vertical planes is
about ~0.1°.

Corrections and Accuracy

The deflections of the balance under load were applied to the angles
of attack so that the esthated accuracy of the angle of attack was @lo
In the reduction of data, no corrections were made for flow variations in
the test section. The base pressure-was measured and the chord-force
,@atawere corrected to correspond to a-base pressure equal to free-stream
static pressure.

The estimated errors in the force data were:

CL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..tO.004

CD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..~o. oo23

%“”””””*”=******.*.*** •****.*..*to.~4
ch~ ● . . . . . . . . . . . . . . . . . . . . . . . . . . . ..~O.0005

%“”””””””””””””””””””* .*”********:O*l

.

.——— .—.—.— —. .———..——.—
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RESULTS AND DISCUSSION

WARM L53118

‘lb results are presented in figures 8 to 11 showing pitching-
moment coefficient, horizontal-cansxd hinge-moment coefficient, drag
coefficient, and singleof attack plotted against lift coefficient,
respectively.

Figure 8, which shows the variation of pitching-manent coefficient
with lift coefficient for horizontal-canard-controldeflections of 0°,
4°, 8°, and 12°, indicates that no appreciable change results from the
installation of any of the nose configurations except the cruciform
shape. The missile with the cruciform nose shape produced higherpitchlng
moments as greater IAft coefficients and canard deflections were experi-
enced, indicating that this nose shape behaved as a lifting surface. The
fact that the pitchhg-mcment-coefficient curves were substantially the
-sane for the remaidng nose shapes is noteworthy, considering the large
differences in flow fields at the noses. Reference 9 presents in greater
detail the static longitudinal stabili@ characteristics of the missile
with the parabolic nose.

El@.n?e9 shows the horizontal-canard hinge-moment coefficients for
four of the seeker-nose shapes compared to those for the parabolic nose.
Hinge moments for the configurationswith the spherical and crucifomn
nose shapes were not measured. The spike-nose configurations tended to
produce larger negative moments as canard-control angles were increased,
this effect being mme pronounced in the cue of the cone spike. The
substitution of the conical or slotted-cone noses for the parabolic nose
had little effect on the horizontal-canard hinge moments. A comparison
of exper~ntal. and theoretical horizontal-canard hinge mmnents at zero
angle of attack for the missile wtth the parabolic nose is presented in
reference 9.

Since the data were obtained for a complete configuration inwbich
approximately 60 percent of the total drag is attributed to the nacelles
and nacelle struts (ref. 10), the drag differences for the model with
various nose shapes sre generally small compared to total drag. AE pre-
viously indicated in the section “Corrections and Accuracy,” it appe=s
that the accuracy of the chord-force measurement may be of the order of
the drsg increments sought. However, the zero-angle-of-attack-drag
results presented in reference 2 for tests of a similsx series of nose
shapes show that the drag curves for the various noses at a Mach number
of 1.60 fsll in much the ssme order as those of figure 10. This, as
well as the lack of scatter exhibited ti figure 10, indicates that the
drag accuracy is substantially better than
ematical analysis of the possible errors.

is givenby a detail.edmath-
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The data indicate that at low lift coefficients, the configuration
the spherical dose produced the greatest drag and showed a differ-
in drag coefficient of the order of 0.01 (baqed on wing area) ovez
for the parabolic-nose configuration,which produced the least drag.

It is indicahd that the drag for-the c~cal-nose configuration is can=
parable to that for the parabolic-nose configuration at moderate and
high lift coefficients. It appears that the slotted-cone and cone-spike
noses are cmparable in drag up to.a lift coefficient mound 0.3, with
the drag curves of these two configurations fdli.nn about midway between
those for the parabolic- abd spherical-nose configurations. The drag
reduction effected by the addition of the plain spike seems to have dimin-
ished rapidly above an angle of attack of 5° (CL = O.15).

Figure U. show$ lift coefficient plotted against angle of attack
and indicates that the instdd.ation of the several nose shapes had Little
or no effect on the lift-curve slope.

CONCLUSIONS

An investigation has been made of the effects of various seeker-
nose configurations on the pitching-moment coefficient and horizontal-
camrd control effecti=nessj horizontal-canard hinge-mmlent coefficient,
and lift snd drag coefficients of a rsm-jet camrd missile havimg 70°
delta surfaces with pylon~ounted nacelles attaohed to the fuselage at
90° to the wing plane. The tests were made at allachnunber of 1.60 w

a Reynolds number o-f3.83 x 106, based on wing mean aerodynamic chord.
The results indicated the following conclusions:

1. Static longitudinal stability was virtually unaffected except
in the case of the cruciform-nose configuration at high lift coefficients.

2. No configuration among those tested exbibiteda significant
difference in horizontal-canard control effectiveness except the crucifozm~
nose.

3. Horizontal-canard hinge moments, Ch=, for the c~cd, slot&d-

cone, and parabolic-nose configurations were virhdly the ssme. For
the spike-nose configurations, ~H, exhibited a ten~ncy to larger neg-

ative moments, the effect being more pronounced for the cone spike.

k. The pa=bolic-, conical-, slotted-cone, cone-spike, and plain-
spike-nose configurations showed less drag at low lift coefficients than
the configuration with the spherical.nose.

—— -._.__—._—._
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5. None of the nose shapes tested a~reciably affected the llft-
curve slope.

Langley Aeronautical Laboratory,
National Advisory Cmmittee for Aeronautics,

U@-ey~eld, Vs., -t 26, 1953.
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Body:

Length,
diameter, in.
tie . . . . .

Fineness ratio . . .
$lasearea, sq in. . .

wing:

span,
Chord
Chord
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. .

. .

Leading-edge angle normal to lea&lng edge, deg
Mean aerodynamic chord,

Aileron:

Area, sq in. . . . . .
Mean aerodynamic chord,

Horizontal canardE:

Area (exposed), sq in.
Mean aerodynamic chord,

Vertical canaxds:

Area (exposed), sq in.
Mean aerodynamic chord,

in.

in:

.in.

.in.
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“~;.83;

5:583

II .853
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. 4.606
104.700
. 1.404
. . 70

.0147
; .0543

15.6
: 11.48

. 3.201

. 3.071

6.406
: 2.576

. 3.203

. 1.8~

._ —.. — .— —-— —



12 WA FM L53u8

TABLE II.- I!ODYCOORDINATES WITH PARAEOIZC NOSE

Body Station Radlu.s

o 0
.297 .076
.627 .156
.956 .233

1.285 .307
1.615 .378
1.945 .445
2.275 .509
2.605 ●573
2.936 .627
3.267 .682
3.9598 ,732
3.929 .780
4.26o .824
4.592 .865
4.923 .903
5.255 .g40 ~
5.587 .968
5.920 .996
6.252 1.020
%.583 1.042

all.542 1.333

90.833 1.333

aA1.lcontcmw are straight-line elements between stations
.iloted. =&==
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I

I x, in.

o

.W3
1 .(XXI
1.167
1.333
1.375
1.502
1.667
2.333
3.om
6.2ca

R, in. I x, in. I
r, In.
(a)

o

.325

.360

.402

.429

.433

.441

.443

.41.8

.375

.ly

0.963
7.603
15.712
14.962

o.7ti

.996

.996
1.069

a
All internal contours are straight smfaces between the paints noted. ‘“

I
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F@me 1.- System of longitudinal dab ility axes. Arrows indicate

posit ive values.
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Figure 4.- hlChd.d.
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Top view of installation
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Figure 5,-

Sting diameter at model base 1,890
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Figure 6.- Detai~ of nose shapes.

Pombak-me mwilnates

WY station,x

.2:7

.627

.956
LM:

1.945
2275
2605
:;;;

5598
5929
4.063 7

RmhIs, r

O“m
.156
.233
.?07
,378
.445
.509
.573
.627

.662
.732
.7s0
.6m

All dimene ions ere in Inches.
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.12

.10-

.08

.

.06

.04

.02

0 (-l

-.02

-.04

‘.06 -

‘.08 -

~ Parabolic nose
——— u– Sphericol nose
—--0- Conical nose
—--+ 30° slotted cone
—---~ 30° cone-spike
——- – 30° plain spike
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